Scalar-flat Lorentzian Einstein-Weyl spaces
نویسندگان
چکیده
منابع مشابه
Homogeneous Einstein–weyl Structures on Symmetric Spaces
In this paper we examine homogeneous Einstein–Weyl structures and classify them on compact irreducible symmetric spaces. We find that the invariant Einstein–Weyl equation is very restrictive: Einstein–Weyl structures occur only on those spaces for which the isotropy representation has a trivial component, for example, the total space of a circle bundle.
متن کاملConformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds
The main result of this paper is that a Lorentzian manifold is locally conformally equivalent to a manifold with recurrent lightlike vector field and totally isotropic Ricci tensor if and only if its conformal tractor holonomy admits a 2-dimensional totally isotropic invariant subspace. Furthermore, for semi-Riemannian manifolds of arbitrary signature we prove that the conformal holonomy algebr...
متن کاملConformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملDimensional Reduction of Conformal Tensors and Einstein–Weyl Spaces⋆
Conformal Weyl and Cotton tensors are dimensionally reduced by a Kaluza– Klein procedure. Explicit formulas are given for reducing from four and three dimensions to three and two dimensions, respectively. When the higher dimensional conformal tensor vanishes because the space is conformallly flat, the lower-dimensional Kaluza–Klein functions satisfy equations that coincide with the Einstein–Wey...
متن کاملEinstein–Weyl from Kaluza–Klein
We discuss the Kaluza–Klein reduction of spaces with (anti-)self-dual Weyl tensor and point out the emergence of the Einstein–Weyl equations for the reduction from four to three dimensions. As a byproduct we get a simple expression for the gravitational instanton density in terms of the Kaluza–Klein functions. © 2007 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Classical and Quantum Gravity
سال: 2001
ISSN: 0264-9381,1361-6382
DOI: 10.1088/0264-9381/18/14/101